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Bessel Functions 

By J. E. Kilpatrick,' Shigetoshi Katsura2 and Yuji Inoue3 

I. Introduction. Integrals of products of Bessel functions are of general interest. 
Define W-integrals by 

VJV2.V 1(a,, a2 a,) co 
J f ,. (alt)J^2 (a2t) J,j(alt)1xdt. 

In this note we consider 

(1.1) W3/2+n. ,3/2+n2,3/2+nS,3/2+n4(l 1,1 12 ) U1, 

where n1, n2, n3, n4 are zero or positive integers and n1 + n2 + n3 + n4 is even, 
and 

(1.2) W/2+nl, 3/2+n2, 3/2+n3 (a, b, b) U2, 

where nI, n2, n3 are zero or positive integers, nI + n2 + n3 is even and a, b are 
real positive numbers. The symbols Ui are used for convenient reference. 

Integrals (1.1) and (1.2) together with integrals of threefold and fourfold prod- 
ucts of associated Legendre functions [7], were used in the calculation of virial co- 
efficients in statistical mechanics [3], [4], [5], [6]. 

The usual numerical integration techniques such as Simpson's method, Gauss' 
method, method of indefinite integral of polynomials [7] etc., when applied to in- 
tegrals with oscillating integrands such as in (1.1) and (1.2) are inefficient. 

Values of integrals (1.1) and (1.2) can be obtained by transforming them into 
Mellin-Barnes integrals [1], [2], etc., or Meijer's G-functions [2], and application of 
the residue calculus as developed by one of the authors in [3] leads to the exact de- 
termination of the integrals. 

As the Mellin-Bames integrands are rather complicated, one has to do consid- 
erable scanning to determine the actual poles. In this paper, the scanning process 
and the evaluation of the residues at these poles is computer programmed. 

II. W(, 3/2+n13/2+n,3/2+n,3/2+n , 1,). We consider the integral (1.1). 
We use a series representation of the products of the two Bessel functions [9]: 
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- 0 S ? 7 _ t; rQT 2 +8 n + + n2 +2s+ 1 
= E 

s2 1 !r( + nj+ s + 1 r( + n2 + s +1 )r( + nj + + n2 + s + l (2.1) \ 22 2 2+ + 

cor ( )_ stnl+nf+3+2sp( + nli + n2 + 4)r( + n + n2 +5) 

\/7r s=o 5\ 

(2.2) s!r(s + nl + 2)r s + n2 +2)r(s + nl + n2+ 4) 

- U3. 

The summation over s is replaced by a complex integral over ds by using the 
fact that the residue of r(z) at z = -1 is (-)1/1! for a zero or positive integral 
value of 1. Hence 

(2.3) U3 -1 1 IS+f o r(-s + A)F(s + E)P(s + F)tnl+n2+2s+3 

\a/1r 27ri So-X Ior(s + L)r(s + J)F(s + K) 

where 

2.4) 
A = O, L = ni + 5/2, E = (n, + n2 + 4)/2, J = n2 + 5/2, 

F = (n, +n2+ 5)/2, K = ni +n2 +4, 

where so is chosen in such a way that the poles of r(-s + A) lie on the right of 
the path and the poles of r(s + E) and P(s + F) on the left of the path. 

From (2.4) -F < -E, thus 

(2.5) -E < so < A. 

Substituting (2.3) into (1.1), we have 

U1 $- f dt 1 fso'co r(-8 + A)r(s + E)r(s + F) 

(2.6) 1 -\a/7r 0 27ri S-jO r(s + L)r(s + J)P(s + K) 

X J3/2+n3 (t)J3/2+n4(t)tnl?n2?28?3d8- U4 

Next, so is moved to the left in such a way that the condition for the convergence 
of Weber-Schafheitlin's integral [9], [2] 

00 

(2.7) JJ3/2+ns, (t)J3/2+n4 (t)tl+ 1+ 2+2sdt 

is satisfied, if necessary. That is, SO is chosen to satisfy simultaneously (2.5) and 

(2.8) -D < so < B, 

where 

(2.9) 19 =3 + ni + n 2 + n3 + n4 nB - 1- n2 (2.9) D = B? 
2f3?l41l1l 

2 B= 2 

Then, the order of the integration f dt and f ds can be changed, and the in- 
tegration over dt yields the Mellin-Barnes integral [1], [2]: 
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lL fSo+? r(-s + A)J'(s + E)r(s + F) ds 

(2.10) /7 2ri S-iO r(s + J)r(s + K)r(s + L) 

x c 
J3/2+n 3(t)J3/2+n 4(t) l+nl+n2+2s dt 

2wr 2wri S- io 

(2.11) X rF(-s + A)r(-s + B)r(-s + C)r(s + D)r(s + E)r(s + F)d 
r(-s + G)r(-s + H)r(-s + I)r(s + J)r(s + K)r(s + L) 

U5, 

where 

C 2-nl-n2 G 2-nl-n2-n3+ n4 C 
2 2 

(2.12) 
5-nl-n2+An3+An4 2-nl-n2A+n3-n4 

H= 2 1 I=--- 2 

The right-hand side of (2.11) belongs to the third type of Mellin-Barnes in- 
tegrals [1], [2], in which the complex variable z is set equal to 1. Hence it is expressed 
as a Meijer G-function [2]. 

(2.13) U GN (1~~~1j1 FG (2.13) ~5 =2r ( UAl B, C, 1 -J, 1 -K, 1 - L 

Because of the interrelationships of the quantities A, B, * *, L, the above G- 
function cannot be expanded in the usual fashion as a sum of three generalized 
hypergeometric functions of the form 6F5. However, limiting forms of the general 
expansion can be taken. In this connection, see [8, p. 14]. In the present instance, 
the resultant expressions depend on the interrelations between ni, n2, n3 and n4. 

Thus, to avoid any specific configurations among the ni, we evaluate the second 
integral representation in (2.10) by using the poles like r (- s + A) which lie to the 
right of the path of integration. 

III. Programing for Computers. We define G(s) by4 

(3.1) G(s) = r(s), when s is a positive integer, 
or a positive or negative half odd integer, 

() 

(3.2) G(s) when s is zero or a negative integer, 
( s).' (G(s) is residue of r(s)). 

Then (2.1 1) is given by 

us= 1 G(-s + A)G(-s + B)G(-s + C)G(s + D)G(s + E)G(s + F) 

33) 2wr poles G(-s + G)G(-s + H)G(-s + I)G(s + J)G(s + K)G(s + L) 

4Meijer G-functions and G(s) defined here should not be confused. 
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where Zpoles means a sum over poles of integrand of (2.11) on the right of the path 
of the integration. 

The value of s which can be a pole is an integer or a half odd integer. When 
the value of an argument of a G-function in the numerator, say, - s + A, is a nega- 
tive integer or zero for some integral or half odd integral value of s, a weight factor 
+ 1 is given to the corresponding G-function. When the value in the denominator, 
say, s + L, is a negative integer or zero, a factor -1 is given to the corresponding 
G-function. Determine weight factors for all G-functions in the numerator and in the 
denominator. 

When the sum of weight factors of G-functions in the numerator and those in 
the denominator is equal to + 1 for a value (integer or half odd integer) of s, then 
s is a simple pole. When it is equal to a positive integer n, s is a n-ple pole. When 
it is equal to zero or a negative integer, s is not a pole. In our example, double and 
higher-order poles do not appear.5 

The values of G(-s + A), G(-s + B), * , G(s + L), are picked out from a 
table of G(t) tabulated in a memory, and the values are substituted into (3.3); then 
it gives the residue of (2.11) at s. This process is repeated for every integral and 
half odd integral value of s from smjm to Smaxy where smin and Smax are the minimum 
and the maximum values of s which can be a pole, respectively.6 They are given by 

(3.4) Smin = Min (A, B), Smax = Max (G, H, I) . 

Since the maximum value of G(s) and the value of products of G(s) in the course 
of the calculation sometimes cause overflow or underflow, the table of log IG(s)I is 
tabulated in the memory in the actual calculation. With regard to the sign of G(s), 
sg(s) is defined for integral or half odd integral values of s as follows, 

sg(s) = -1, (G(s) < 0), fors <0 and 12sl = 1 or2 (mod 4), 

sg(s) = +1, (G(s) > 0), otherwise. 

Then, after each factor of log I G(s) I is added or subtracted, the sign is associated 
by 

U6 = sg (-s + A) sg (-s + B) sg (-s + C) sg (s + D) 
27r poles 

X sg (s + E) sg (s + F) sg (-s + G) sg (-s + H) sg (-s + I) 
X sg (s + J) sg (s + K) sg (s + L) 

(3.6) X exp [log IG(-s + A)l + log IG(-s + B)l + log IG(-s + C) 
+ log jG(s + D) I + log jG(s + E) I+ log jG(s + F) 
- log IG(-s + G)j - log IG(-s + H)l - log IG(-s + I)j 

- log JG(s + J)j - log JG(s + K)j - log jG(s + L)f]. 

I When n1 + n2 = even, all poles of r( - s + C) are canceled by those of r( -s + G) (n3 > n4) 

or of r(-s + I) (n3 _ n4). When n1 + n2 = odd, all poles of r(-s + B) are canceled by those of 
r(-s + G) (n3 - n4 > -1) or of r(-s + 1) (n3 - n4 < -1). Poles of r(-s + A) and 
r(-s + B) do not coincide. 

6 Poles of r(-s+A) are canceled by those of r(-s+l) for I<s (n3 > n4) or of r(-s + G) 
for G<s (n3 < n4). When n1 + n2 = even, poles of r(-s + B) are canceled by those of 
r(-s + H) for H < s. When n1 + n2 = odd, poles of r(-s + C) are canceled by those of 
r(- s + H) for H < s. Hence, the number of poles is finite. 
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A program to calculate (1.1) was made using the method described in this 
section. 

IV. WV3/?+ ,3/2?n2,3,2?n3(a, b, b). A similar argument can be carried out for the 
integrals of three-fold products of Bessel functions (1.2) by substituting the in- 
tegral representation for the Bessel function 

(4.1) J32n,(at) so1 
+ 

F(-s) at\3/2?n,?2s d (2 sri | i_ (5/2 + n1 + s) \2/ 

into the first factor of (1.2), where 

(4.2) so < 0. 

The integral (1.2) is shown to satisfy 

U =1 1 b3/2(a)2n. Iso+ ( )2s 

r(-s + A)Jr(-s + M)Jr(-s + N)J'(s + P) - 

X P(-s + Q)J'(-s + R)J'(-s + T)F(s + L) = 

(4.4) -P < so < M 

where 

A O Q 2 - ni - 
n2 + n3 

A=0, ~~~~~~~~~2 

M 1 - ni R 5-nl + n2+ n3 

(4.5) 
2- 

n 
n 2-ni + n2-n3 N= 2'T 2 

3 + nl + n2 + n3 5 + 2n, 
2 L= 

The right-hand side of (4.3) belongs to the third type of Mellin-Barnes integrals 
in which the complex variable z is put to be equal to (a/2b)2. Hence, the value of 
the integral can be obtained by calculating the sum of residues of the integrand at 
the poles of I(-s + A), IF(-s + M) and I(-s + N) to the right of the path of 
integration when a < 2b, and those at the poles of F (s + P) to the left of the path of 
integration when a > 2b. In particular W31/2 3/2?n3 (2, 1,) vanishes for ni = 0 
and n2 + n3 (even) > 2, since no poles are found to the left of the path of integration. 
Hereafter we consider the case where a ? 2b. 

The value so must satisfy the condition of (4.2) and the convergence condition 
of the Weber-Schafheitlin's integral (4.4), simultaneously. Hence 

1 3/2 (a) a ) 
4 (2r)1/ \2b/ poles \2b/ 

(4.6) X G(-s + A)G(-s + -M)G(-s + N)G(s + P)-U 
G(-s + Q)G(-s + R)G(-s + T)G(s + L) 

Smin = Min (A, M1), smax = Max (Q, R, T) . 
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The right-hand side of (4.6) is expressed as 

1 3/2 (a 31 ((a 2 _P; Q RI 7 
(4.7) U8=- 2V G443/+~ M 

Summation in (4.6) is to be carried out by the same method as the fourfold products 
of Bessel functions. 

V. Tables. Tables of integrals 

(5.1) 3/2,n1 13/2+n) 3/2+n, 3/2+n, 

for ni, n2, n3, n4 10, n1, + n2+ n3+ n4 =even, of 

(5.2) W5/2(ab,b (V3/2+nl, 3/2+nf ,3/2+nf (a, b, b) 
for n1, n2, n3 ? 20, nli + n2 + n3 = even, a, b, c = l and of (5.2) for n1 = 0, n2, n3 
< 16, n2 + n3 = even, a, b, c = 1 or 2 were calculated by the present method and a 
copy was deposited as a document in the UMT file.7 

Integrals W1,3(a, b, b) and W123,,(a, a, b, b) for integral values of Pi can be 
obtained by modifying the present method in such way that residues at double 
poles can be calculated. This can be done by storing 'I'(n) and T(n + 1) (T(z) = 

T"(z)/F(z)) in the memory. 
Integrals WMj,3(a, b, c) and WI2'3,(a, b, c, d) for different a, b, c, d are out- 

side the range of applicability of the present method. They can be evaluated by 
the method of Appendix III in [3] for half integral values of vi'. General results 
along these lines will be reported in the future. 

7 "Tables of integrals of products of Bessel function" by J. E. Kilpatrick, S. Katsura and Y. 
Inoue, UMT file number 27, Math. Comp., v. 21, p. 267. Numerical calculations were carried out by 
using the Rice University Computer, an IBM 7090 in UNICON (University Contributioln of 
Japan IBM) and HITAC 5020 in Tokyo University. The authors acknowledge support from 
these computing centers. 
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